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A theory of the quantum oscillations of resistivity due to interaction of two-dimensional electrons with
impurities and acoustic phonons in the presence of perpendicular magnetic field is developed for multisubband
systems. A comparison of the theory with recent experimental data for a quantum well with two occupied
subbands demonstrates a good agreement and confirms that peculiar features of the observed magnetoresis-
tance are caused by interference of magnetointersubband and phonon-induced oscillations. It is shown that the
intersubband phonon-assisted transitions are responsible for this interference phenomenon.
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I. INTRODUCTION

Quantum oscillations of resistivity in high-mobility two-
dimensional �2D� electron layers in the region of relatively
weak perpendicular magnetic fields �B�1 T� attract a con-
siderable attention during the past decade. Apart from the
well-known Shubnikov–de Haas oscillations �SdHO� which
are caused by oscillations of the density of states at the Fermi
level and strongly damped with increasing temperature T,
there exists a class of oscillations which survive increase in
T. These oscillations originate from scattering-assisted cou-
pling of electron states in different Landau levels. If elastic
scattering �by impurities, interface roughness, etc.� domi-
nates, the coupling can be achieved by application of a
strong dc voltage1 or in the presence of microwave
radiation.2 Inelastic scattering by acoustic phonons enables
transitions of electrons between Landau levels even in the
linear transport regime. This scattering becomes important
along with the elastic one for samples of high purity and
when the temperature is increased. The probability of
electron-phonon scattering is maximal when the phonon mo-
mentum Q is close to the Fermi circle diameter, 2pF. This
sensitivity of the scattering to acoustic phonon momentum
leads to a special kind of magnetophonon oscillations known
as phonon-induced resistance oscillations �PIRO�.3–10

The periodicity of PIRO is governed by commensurability of
the characteristic phonon frequency �determined by the
transferred momentum 2pF� with cyclotron frequency �c.
In GaAs quantum wells of very high mobility
��107 cm2 /V s�, these oscillations are visible starting from
T�2 K.8 Initially, PIRO was explained by involving the
interface phonon model. Later, it was found that the model of
bulk �three-dimensional� phonons gives similar results for
magnetoresistance. A theory of PIRO based on consideration
of 2D electrons interacting with anisotropic bulk phonon
modes has been presented recently.10

Electron systems with two �or more� populated 2D sub-
bands, which are realized in double quantum wells and wide
single quantum wells with high electron density, have pecu-
liar magnetoresistance properties because of the possibility
of intersubband transitions of electrons. In the presence of
elastic scattering, the intersubband transitions couple differ-
ent Landau levels under the condition that subband splitting

energy � is a multiple of the cyclotron energy. The resistivity
of two-subband systems exhibits magnetointersubband
oscillations11 �MISO� owing to periodic modulation of the
probability of intersubband scattering by the magnetic field.
The MISO have been studied both experimentally12–17 and
theoretically11,18–20 for more than two decades. Recent obser-
vations of MISO with large amplitudes in high-mobility
double quantum wells16,17 have stimulated attention to this
phenomenon. A special interest is devoted to the interference
of MISO with microwave-induced oscillations of
magnetoresistance,17,21 which is observed also in three-
subband systems realized in triple quantum wells.22 This is a
representative of quantum interference phenomena caused by
combined action of different mechanisms of electron transi-
tions between Landau levels; the other examples can be
found in Refs. 6, 23, and 24.

Recent experimental results25 indicate that the interfer-
ence phenomena in magnetoresistance of 2D systems with
two populated subbands can be observed in the linear trans-
port regime, without either a strong dc voltage or microwave
illumination. A peculiar magnetoresistance picture showing
the interference of MISO and PIRO develops with increasing
temperature, when phonon-assisted transitions between Lan-
dau levels become important. The present study is motivated
by this experiment, since the observed phenomenon requires
a theoretical explanation. A more general aim of this paper is
to present a theory of linear magnetoresistance in multisub-
band systems by taking into account interaction of electrons
with both impurities and acoustic phonons. So far, the theo-
retical research of quantum magnetoresistance in such sys-
tems was limited by consideration of electron-impurity
scattering.22 The theory given below suggests that the inter-
ference phenomenon observed in two-subband quantum
well25 is caused by phonon-assisted intersubband scattering
of electrons. Under Landau quantization, this scattering leads
to magnetoresistance oscillations whose periodicity is gov-
erned by combined frequencies determined by characteristic
phonon energy and subband splitting energy. Formally, the
magnetoresistance contains intrasubband and intersubband
quantum contributions caused by both scattering mecha-
nisms. The intrasubband impurity-assisted scattering leads to
monotonic positive quantum magnetoresistance, while the
intersubband impurity-assisted scattering is responsible for
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MISO. The intrasubband phonon-assisted scattering leads to
oscillating magnetoresistance similar to PIRO in single-
subband systems.10 Finally, the intersubband phonon-assisted
scattering produces the MISO-PIRO interference contribu-
tion in magnetoresistance. The properties of this oscillating
contribution are strongly influenced by the effect of suppres-
sion of intersubband transitions involving phonons with
small transverse momenta.

The paper is organized as follows. Section II presents ba-
sic equations used for calculation of resistivity and the ana-
lytical results of this calculation. Section III contains com-
parison with experiment, discussion, and conclusions.

II. FORMALISM

The formalism for description of 2D electrons interacting
with impurities and bulk acoustic phonons in the presence of
a weak transverse magnetic field and external fields is based

on the self-consistent Born approximation and given in detail
in Refs. 10 and 26. These results can be straightforwardly
extended to the case of multisubband occupation �see also
Ref. 22 for electrons interacting with impurities�. The kinetic
equation for the generalized Wigner distribution function f j��

depending on the subband index j, energy �, and electron
momentum angle � is written as

�c
� f j��

��
= Jj��

im + Jj��
ph . �1�

The electron-impurity �im� and electron-phonon �ph� colli-
sion integrals standing in this equation are

Jj��
im = �

j�
�

0

2� d��

2�
� j j��� − ���Dj��+	j j�

�f j��+	j j��� − f j��� ,

�2�

and

Jj��
ph = �

j�
�

0

2� d��

2�
�


�

0

� dqz

�
mM
Q

j j� 	��N�
Q
+ f j���f j��−�
Q+	j j��� − �N�
Q

+ 1�f j���Dj��−�
Q+	j j�

+ ��N�
Q
+ 1 − f j���f j��+�
Q+	j j��� − N�
Q

f j���Dj��+�
Q+	j j�

 . �3�

Here and below, the system of units with �=1 is used.
The electron-impurity collisions are described in Eq. �2�

by the scattering rates � j j���=mwjj��qjj����, where wjj��q�
are the spatial Fourier transforms of the correlators of ran-
dom scattering potential, m is the effective mass of electrons,

qjj���=�pj
2+ pj�

2 −2pjpj� cos  is the momentum transferred
in the elastic scattering, pj is the Fermi momentum in the
subband j, and =�−�� is the scattering angle. The
subband-dependent Fermi momenta are pj =�2m��F−� j�,
where � j are the subband energies relative to the reference
point of the chemical potential �F. These momenta are re-
lated to partial electron densities in the subbands as pj

2

=2�nj. The total sheet density in the 2D layer is ns=� jnj.
The phonons are characterized by the mode index 
 and

three-dimensional phonon momentum Q= �q ,qz�. The
squared matrix element of electron-phonon interaction po-
tential is represented as

M
Q
j j� = C
QIjj��qz�, Ijj��qz� = �j�eiqzz�j���2. �4�

The overlap factor Ijj� depends on the form of envelope wave
functions for the states �j� and �j�� of the corresponding sub-
bands. The function C
Q is the squared matrix element in the
bulk. This function includes both deformation potential and
piezoelectric mechanisms of interaction, and its explicit form
can be found in Ref. 10. The anisotropic phonon modes in
cubic crystals are described by the eigenstate problem

�
j

�Kii��Q� − �ii��M�2�e
Qi� = 0, �5�

where i and i� are the Cartesian coordinate indices, Kii��Q� is
the dynamical matrix expressed through three elastic con-
stants, �M is the material density, and e
Qi are the compo-
nents of the unit vector of the mode polarization. The solu-
tion of Eq. �5� gives the phonon frequencies �=�
Q. The
phonon system is assumed to be in equilibrium and is not
affected by interaction with electrons, so N�
Q
= �exp��
Q /T�−1�−1 in Eq. �3� is the Planck’s distribution
function. Owing to the smallness of phonon velocities com-
pared to Fermi velocities, the electron-phonon scattering is
treated in the quasielastic approximation with Q
=�qz

2+qjj�
2 ��.

Finally, the Landau quantization of electron states is de-
scribed in Eqs. �2� and �3� by the dimensionless �normalized
to its value at B=0� subband-dependent density of states Dj�,
and the effect of external dc field is given by the function22

	 j j���,��� =
e

2i�c
�E−�v je

i� − v j�e
i��� − E+�v je

−i� − v j�e
−i���� ,

�6�

where E�=Ex� iEy, E= �Ex ,Ey� is the dc field strength, and
v j = pj /m are the Fermi velocities.

The components of the current density are expressed
through the distribution function as
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� jx
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�
�

j
� d�Dj�pj�

0

2� d�

2�
�cos �

sin �
� f j�� + ���− Ey

Ex
� ,

�7�

where ��=e2ns /m�c is the classical Hall conductivity. To
find the linear response of the system to the applied electric
field, one may expand f j��+	j j��� in the collision integrals as

f j����+ ��f� /���	 j j�, where f� is the equilibrium �Fermi-
Dirac� distribution function. Then, the kinetic equation al-
lows one to find the anisotropic distribution function f j��

proportional to the dc field strength. The basic Eqs. �1�–�7�
are obtained for spatially homogeneous systems under as-
sumption that the temperature, cyclotron energy, and colli-
sional broadening energies �see Eq. �13� below� are small in
comparison with �F. Also, the collisional broadening is as-
sumed to be small compared to subband splitting energies
�� j −� j��.

In the regime of classically strong magnetic fields, when
the cyclotron frequency is much larger than the transport
scattering rate of electrons, the above equations lead to the
following form of the diagonal �dissipative� conductivity:

�d =
e2ns

m�c
2�

j j�

nj + nj�

2ns
�� j j�

im� d��−
� f�

��
�Dj�Dj�� + Ŝ j j�� T

�
Q
2 F��
Q

2T
�� d��f�−�
Q

− f���Dj�Dj��−�
Q
+ Dj��Dj�−�
Q

��� , �8�

where � j j�
im = �2��−1�0

2�d� j j���F j j��� are the impurity-
assisted transport rates, F j j���=1−2pjpj� cos  / �pj

2+ pj�
2 �,

and F�x�= �x /sinh�x��2. The scattering of electrons by
phonons is conveniently described by the integral operators

Ŝ j j� defined as

Ŝ j j�	A
 � �
0

2� d

2�
�

0

2� d�

2�
�


�

0

� dqz

�
mM
Q

j j�F j j���A ,

�9�

where �= ��+��� /2 and A is a function of the variables of

integration. The quantities �
Q and M
Q
j j� depend on the trans-

verse phonon momentum qz, scattering angle , and polar
angle of the vector q �this angle is equal to � /2+�� as
described by Eqs. �4� and �5�, and relation Q=�qz

2+qjj�
2 ��.

The diagonal resistivity �d is expressed through �d as �d
��d /��

2 . Under the condition 2�2T��c, when the SdHO
are thermally averaged out, the resistivity is given by

�d =
m

e2ns
�
j j�

nj + nj�

2ns
�� j j�

im Dj�Dj���� + Ŝ j j�� T

�
Q
F��
Q

2T
�

� �Dj�Dj��−�
Q
�� + Dj��Dj�−�
Q

����� , �10�

where the symbol  . . . �� denotes the averaging over the in-
terval of cyclotron energy �the density of states Dj� is peri-
odic in energy with the period �c�.

The expression �10� applies to systems with arbitrary
number of subbands and is valid for arbitrary �periodic� den-
sity of states. If quantum oscillations of the density of states
are neglected �Dj�=1�, this expression produces the classical
resistivity �d

c =m�tr /e2ns, where �tr is the transport scattering
rate comprising contributions from both scattering mecha-
nisms

�tr = �
j j�

nj + nj�

2ns
�� j j�

im + Ŝ j j�� 2T

�
Q
F��
Q

2T
��� . �11�

The consideration below is carried out for two-subband
systems. The equations for calculation of the density of states
in these systems can be found in Ref. 20. An analytical av-
eraging in Eq. �10� is done under approximation of overlap-
ping Landau levels, when only the first oscillatory harmonics
of the density of states are retained. The result represents a
sum of the classical resistivity and quantum contributions
caused by both intrasubband and intersubband scattering

�d = �d
c +

m

e2ns
�d1

22n1

ns
V11 + d2

22n2

ns
V22 + 2d1d2V12 cos

2��

�c
� ,

�12�

where �=�2−�1 is the subband splitting energy, dj =exp�
−�� j /�c� are the Dingle factors and

� j = �
0

2� d

2�
�� j j�� + �12��� + � j

ee �13�

are the quantum relaxation rates determining the collisional
broadening of Landau levels. These rates comprise contribu-
tions due to electron-impurity and electron-electron �ee� in-
teraction �see the next section for evaluation of � j

ee�. The
phonon-assisted scattering contribution to � j is neglected be-
cause it is small compared to the contributions included in
Eq. �13�. The oscillating scattering rates V j j� are introduced
as

V j j� = � j j�
im + Ŝ j j�� 2T

�
Q
F��
Q

2T
�cos

2��
Q

�c
� . �14�

The phonon-induced parts of the rates V j j� describe PIRO in
multisubband systems. Since the intersubband PIRO compo-
nent entering the last term in Eq. �12� is multiplied by the
MISO factor cos�2�� /�c�, the corresponding contribution
describes the interference of MISO and PIRO. The conven-
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tional MISO come from the impurity-assisted intersubband
contribution proportional to �12

im. The intrasubband quantum
contributions in Eq. �12� do not oscillate with �.

The SdHO correction to the resistivity can be obtained
with the use of Eq. �8�

��d = − T 2m

e2ns
�

j=1,2
�2nj

ns
Ṽ j j + Ṽ12�dj cos

2��Fj

�c
, �15�

where T= �2�2T /�c� /sinh�2�2T /�c� is the thermal suppres-
sion factor and �Fj =�F−� j =�nj /m are the Fermi energies in

the subbands. The rates Ṽ j j� differ from V j j� of Eq. �14� by
the substitution of sin�2��
Q /�c� / �2��
Q /�c� in place of

cos�2��
Q /�c� in the argument of Ŝ j j�. The expression �15�
includes contributions due to both impurity-assisted and
phonon-assisted scattering. Usually, the latter contribution is
less significant, because the activation of phonon-assisted
scattering takes place at the temperatures when SdHO are
suppressed in the weak magnetic field region. Nevertheless,
the phonon-assisted SdHO may become important in the
samples of very high purity, where relative contribution of
phonon-assisted scattering to magnetotransport remains es-
sential in the interval of parameters corresponding to T�1.

III. RESULTS AND DISCUSSION

The results of the previous section are applied below for
calculation of the magnetoresistance of two-subband electron
systems based on GaAs layers grown along the �001� crys-
tallographic axis. The consideration is focused on two-
subband single quantum well of width dw. Approximating the
shape of the confinement potential by a deep rectangular
well, one can write the overlap factors for electron-phonon
interaction as Ijj��qz�=I j j�

2 �qzdw /2�, where

I11�x� =
sin x/x

1 − �x/��2 , I22�x� =
sin x/x

1 − �x/2��2 ,

I12�x� =
32

9�2

x cos x

�1 − �2x/��2��1 − �2x/3��2�
. �16�

Figure 1 presents Ijj��qz� in the graphic form.

To describe the elastic scattering, one needs to specify the
impurity-potential correlator wjj��q�, which depends on nu-
merous parameters such as nature of the impurities, distribu-
tion of the impurities over the structure, properties of inter-
face roughness �if present�, etc. Thus, the exact form of
wjj��q� is generally unknown. For calculations, wjj��q� is
modeled as w11�q�=w22�q�=w0e−lcq and w12�q�=w0�qe−lcq

with �q= �qdw /��2 / �1+ �qdw /��2�, where lc is the correlation
length determining the spatial scale of the random scattering
potential. In high-mobility �modulation-doped� structures,
this potential is smooth: lc is larger than the Fermi wave-
length. The factor �q is introduced to take into account sup-
pression of intersubband scattering by a smooth random po-
tential at small transferred momentum, q�� /dw, as follows
from orthogonality of the wave functions belonging to dif-
ferent subbands.

To estimate the electron-electron scattering rates � j
ee con-

tributing into the Dingle factors, one may use the results of
Refs. 27 and 28. Since in single quantum wells the subband
separation is large, the intersubband electron-electron scatter-
ing requires a large momentum transfer and is considerably
suppressed at low temperatures in comparison with intrasub-
band �small-angle� scattering. Therefore, it is reasonable to
use the corresponding single-subband expressions, � j

ee

�
 jT
2 /�Fj. The coefficients 
 j are of the order of unity and

estimated as27,28 
 j ��−1 ln�q0v j /T�, where q0=2 /aB is the
inverse screening length �aB is the Bohr radius�.

Figure 2 shows the diagonal resistivity calculated for a
quantum well investigated in Ref. 25 �dw=26 nm, n1=6.24
�1011 cm−2, n2=1.91�1011 cm−2, �=15.5 meV� at two
temperatures used in the experiment. The calculation is
based on the expression �12� including the SdHO correction
�15�, the latter is important at T=4.2 K in the region above
0.5 T. An additional term for classical magnetoresistance �es-
sential in the region of B�0.05 T� has been included ac-
cording to Ref. 29. The parameters describing the acoustic
phonon spectrum and electron-phonon interaction can be
found in Ref. 10. The plots show a good agreement with
experiment as concerns both the background and oscillating
resistivity. The small-period oscillations are the MISO. The
oscillating modifications of the resistivity by electron-
phonon interaction �large-period features� are seen already at
T=4.2 K. These features become pronounced with increas-

FIG. 1. �Color online� Overlap factors Ijj��qz� for rectangular
well model, according to Eq. �16�.

FIG. 2. �Color online� Calculated magnetoresistance of two-
subband quantum well studied in Ref. 25 at T=4.2 K and 12.4 K.
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ing temperature, when more phonons participate in the tran-
sitions. The “irregular” features at T=4.2 K in the high-field
region, seen also in the experimental graphs, are caused by
superposition of MISO and SdHO. Notice that the calcula-
tions involve no adjustable parameters for electron-phonon
interaction. The only adjustable parameter of the theory, the
correlation length of the impurity potential �lc�, is determined
from fitting the calculated amplitude of quantum oscillations
of resistivity to experimental data.

Figure 3 shows behavior of three quantum contributions
to resistivity entering Eq. �12�. The contribution caused by
electron transitions within the first subband shows distinct
PIRO with periodicity determined by a characteristic phonon
energy 2p1s, where s�5.2 km /s corresponds to the velocity
of the longitudinal acoustic phonon mode in GaAs. This cor-
relation is understandable, since PIRO in high-density
samples occur mainly due to scattering by longitudinal
acoustic phonons.5,10 The second-subband contribution is
suppressed at small B because both electron-impurity and
electron-electron scattering for this subband are stronger,
which leads to a considerable difference in Dingle factors:
d2�d1. Since p2 is approximately twice smaller than p1, the
PIRO associated with the second subband fall into the region
of small B, remain feeble, and are not seen in the plot. Fi-
nally, the intersubband contribution represents MISO whose
amplitude is nontrivially varied by the oscillating part of V12
caused by intersubband phonon-assisted transitions. Non-
monotonic changes of MISO amplitude occur around B
�1 T, while less distinct changes are visible at lower mag-
netic field, in agreement with experimental observations.
One may say that MISO are enveloped by intersubband
PIRO. This intersubband PIRO term is shown in Fig. 3 by
the dashed line.

The period of intersubband PIRO is very close to that of
the first-subband PIRO. At a first glance, this coincidence
seems to be surprising, because the Fermi momenta in the
subbands differ considerably, so the correlation between
PIRO period and Fermi momentum established3 for single-
subband systems does not work. In particular, since the main
contribution to oscillating phonon-induced resistivity comes

from scattering angles around =� �backscattering� and
transverse phonon momenta around qz=0 �see Ref. 10 for the
detailed analysis�, one may expect that intersubband PIRO
periodicity is governed by the phonon energy �p1+ p2�s,
which is smaller than 2p1s. However, for intersubband scat-
tering the situation is more complicated, because intersub-
band transitions with small qz are strongly suppressed by the
overlap factor I12�qz�. The latter is proportional to qz

2 at qz
�� /dw, due to the wave function orthogonality. Therefore, a
more correct estimate for characteristic phonon energy is
��p1+ p2�2+qz0

2 s, where qz0 is a �nonzero� transverse momen-
tum giving the main contribution to the integral over qz in

Ŝ12	 . . . 
 of Eq. �14�. Notice that qz0 decreases with increas-
ing well width dw and is sensitive to magnetic field �qz0
decreases with increasing order of magnetophonon reso-
nance�. Thus, the intersubband PIRO are not expected to be
periodic as a function of 1 /B, even if a single phonon mode
is considered. Another consequence of the constraint intro-
duced by the overlap factor is a suppression of intersubband
PIRO amplitudes. The suppression becomes stronger for
higher-order magnetophonon resonances in the region of
weak magnetic fields. A rough estimate for qz0 in the region
of low-order magnetophonon resonances can be based on the
fact that I12�qz� has a maximum at qzdw�6 �Fig. 1�. Substi-

tuting qz0=6 /dw into the phonon energy ��p1+ p2�2+qz0
2 s,

one gets the result close to 2p1s, which explains the coinci-
dence of the positions of the first peaks of intersubband and
intrasubband PIRO under conditions of the experiment Ref.
25. This coincidence is accidental: for a quantum well with a
different width dw or a different electron density ns, the po-
sitions of these peaks should be different. The above consid-
eration also shows that the amplitude of intersubband PIRO
is suppressed with decreasing dw.

The interference of MISO and PIRO is clear both in ex-
perimental and in theoretical magnetoresistance in spite of
the weakness of intersubband phonon-assisted scattering re-
sponsible for this effect. In principle, the electron-phonon
interaction is capable to produce inversion �flip� of MISO
peaks �such an effect is typical for the experiments involving
microwave irradiation�.21,22 Formally, the flip occurs when
V12 becomes negative, see Eqs. �12� and �14�. To reach this
condition, one should study samples of higher purity, where
oscillating rate due to intersubband phonon-assisted scatter-
ing �second term in V12� may exceed by amplitude the
impurity-assisted intersubband scattering rate �12

im. Theoreti-
cal estimates show that for the quantum well system studied
in Ref. 25 the MISO flip is attainable at the fields above 1 T
if the low-temperature mobility is increased to 4
�106 cm2 /V s. Notice that the expression �12� is applicable
even in the case when elastic impurity-assisted scattering is
absent, so the resistivity is entirely determined by electron-
phonon interaction �the Dingle factors in this case are deter-
mined by electron-electron interaction only�. The corre-
sponding magnetoresistance is plotted in Fig. 4 together with
quantum contributions due to intrasubband and intersubband
scattering. One can see that the oscillating resistivity at weak
magnetic fields in dominated by first-subband PIRO, while
the intersubband PIRO becomes essential starting from 0.3 T.
The interference of MISO and PIRO leads to inversion of the

FIG. 3. �Color online� Quantum contributions to resistivity at
T=12.4 K. Solid lines show the three terms of Eq. �12� as functions
of the inverse magnetic field. Dashed line is the phonon-induced
part of the intersubband term without the MISO factor
cos�2�� /�c� �this part is multiplied by 5 for clarity�.
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groups of MISO peaks around 0.5 T and above 1 T. Although
the situation with no elastic scattering does not occur in re-
alistic samples, it is interesting from the theoretical point of
view, because the interference oscillations exist here in the
pure form �see a number of distinct nodes in the intersub-
band contribution plotted in the inset to Fig. 4�.

The description of magnetoresistance given by Eq. �12�
can be also applied for double quantum wells, where two-
subband electron system is formed as a result of tunnel hy-
bridization of the ground states in the adjacent wells. The
overlap factors for electron-phonon scattering in this case are

different from those of Eq. �16�. Assuming that both layers
are described as rectangular wells of equal width dw and the
system is balanced �electron densities in the wells are equal�,
one obtains

I11�qz� = I22�qz� = I11
2 �qzdw/2�cos2�qzZ/2� ,

I12�qz� = I11
2 �qzdw/2�sin2�qzZ/2� , �17�

where Z is the distance between the centers of the wells. The
geometric interference factors oscillating with qzZ appear be-
cause of tunnel coherence of electron states and may lead to
magneto-oscillations of interwell current30 when emission of
acoustic phonons with large qz is favorable �such oscillations
are not expected to be essential in the magnetoresistance
studied in this paper�. Similar to the case of single well, the
intersubband overlap factor is suppressed at qz�� /Z. From
qualitative point of view, the magnetoresistance of double
quantum wells is similar to that of the two-subband single
quantum wells. However, since the subband separation en-
ergy � in double quantum wells is considerably smaller, the
periods of MISO and PIRO can be made comparable.

In conclusion, a microscopic theory of magnetoresistance
oscillations in multisubband systems is presented. The role
of electron scattering by acoustic phonons is studied in de-
tail. Owing to phonon-assisted transitions between Landau
levels belonging to different subbands, the magnetoresis-
tance shows the interference of magnetointersubband oscil-
lations with magnetophonon oscillations. The results are in
agreement with recent experimental data25 on high-mobility
quantum wells with two occupied subbands.
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